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Abstract: This article presents an analysis of the internal dynamics of the Ca2+-binding protein calbindin,
based on the Networks of Coupled Rotators (NCRs) introduced recently. Several fundamental and practical
issues raised by this approach are investigated. The roles of various parameters of the model are examined.
The NCR model is shown to account for the modifications of the internal dynamics upon Ca2+ binding by
calbindin. Two alternative strategies to estimate local internal effective correlation times of the protein are
proposed, which offer good agreement between predictions and experiment.

The ability of biological macromolecules such as proteins
and nucleic acids to sustain extensive internal motions is
believed to be essential to their function. Thus, beyond well-
established “structure-activity” relationships, there is increasing
evidence that internal mobility of macromolecules plays an
important role in biological function and activity.1 It is tempting
to try to establish links between structure and mobility. This
problem has been tackled in various ways, mainly by normal-
mode analysis (NMA) of atomic motions described by sophis-
ticated2 or simplified potentials.3 NMA offers a useful analytical
tool that is particularly well suited to rationalizeB-factors in
X-ray diffraction studies. The NMA approach, which is based
on a harmonic motional approximation, allows one to calculate
atomic mean-square displacements (AMSDs) of all atoms in a
protein. Internal motions can be studied experimentally by
measuring longitudinal and transverse relaxation rates of15N
nuclei by nuclear magnetic resonance (NMR). Using a model-
free approach,4,5 one can extract a generalized order parameter
Sii

2 and an effective internal correlation timeτie for all vectors
u(NiHi

N) and, by extension, for all amide planesi ) 1 ... N in
a protein withN residues.

Rationalizing local variations of order parametersSii
2 in terms

of a limited set of dynamic parameters is of both fundamental
and practical relevance. Recently, we have introduced a simple
analytical model for predicting NMR order parameters, based
on the dynamics of a network of coupled rotators (NCR).6,7 This
model is particularly well suited for the study of NMR relaxation
rates, which are sensitive to the fluctuations of theorientations
of vectors and tensors that describe magnetic dipole-dipole or
anisotropic chemical shift interactions, rather than to the

positionsof atoms, as in X-ray diffraction. Indeed, the NCR
model describes the dynamics of an ensemble of rotators
undergoing diffusion in a phenomenological potential that
represents many physical interactions (electrostatic, van der
Waals, etc.). This potential is comprised of pairwise coupling
potentials that depend only on the deviation from equilibrium
of the angle between two interaction vectors. The interaction
vectors involved in the description of backbone dynamics may
be chosen among a set of internuclear vectors, collected in
“vector types” such asu(NiHi

N), u(C′iOi), u(C′iCi
R) with i )

1, ...N. This model shares a common feature with the approach
of Haliloglu and Bahar8 in that the geometric constraints of the
motions are determined by the structure. This may represent a
limitation of both models. However, despite its simplicity, the
NCR approach can predict generalized order parametersSii

2 and
effective internal correlation timesτie for each residuei that
agree remarkably well with parameters extracted from experi-
mental relaxation rates.6

Several questions regarding this model remain to be inves-
tigated. In particular, the way the parameters that define the
pairwise potentials influence the dynamic predictions should
be clarified. Does the NCR model also allow one to take into
accountintermolecular interactions, such as those between a
protein and various charged or neutral ligands, substrates, or
cofactors? How do NCR predictions of internal correlation times
compare with those extracted from NMR relaxation rates by
model-free analysis? Moreover, how does the NCR model
compare with NMA? It may not be possible to give definite
answers to such broad questions. It is instructive, however, to
address these questions in the context of a particular example,
in order to identify trends that may be of general value. In this
paper, we focus on the calcium-binding protein calbindin.
Predictions of the internal dynamics of the Ca2+-free (apo) and
Ca2+-loaded (holo) forms of calbindin obtained by the NCR
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model will be compared with experimental observations of NMR
relaxation rates9,10 and with experimental and calculatedB-
factors.11 Finally, we introduce a new strategy for predicting
local effective internal correlation times. This approach will be
illustrated by applications to calbindin and compared with the
usual model-free approach.

The Model

In the NCR approach, each member of an ensemble of
internuclear vectorsui is assumed to undergo a diffusional
“wobbling” motion in a potential. This potential results from a
superposition of termsUij, each of which reflects the coupling
between a pair of vectorsui and uj. Thus the angleθij(t)
subtended by these two vectors fluctuates about an equilibrium
valueθ0ij, which is defined by the (average) equilibrium struc-
ture of the protein. For small fluctuations, for which|θij - θ0ij|
< π/2, one may postulate:

wherek is the Boltzmann constant,T, the temperature,κ0, an
adjustable parameter that is common to all pairs of vectors, and
P2(x) ) (3x2 - 1)/2, the second-rank Legendre polynomial.
The potentialUij reaches a minimum forθij ) θ0ij and thus
tends to restore the instantaneous angleθij(t) between the vectors
ui and uj to its equilibrium valueθ0ij. Moreover, each pair
potentialUij is proportional to the productFi Fj, whereFi andFj

are thelocal densitiesin the vicinity of the “reference atoms”
(see below) of the coupled vectors. Indeed, the local packing
in the neighborhood of the coupled vectors is known to influence
their dynamics.6,12,13 We define the overall potentialU as the
superposition of all pairwise potentialsUij:

The dynamics of each vectorui in the molecule thus depends
on all N coupled vectorsuj, with j ) 1,..., N, j * i. Although
there is no explicit distance dependence in the interacting
potential, it is introduced implicitly by retaining only interactions
involving atoms separated by less than a cutoff distanceRc

max.
This point will be further examined below. The choice of the
vectors that together constitute the NCR network, and therefore
contribute to the potential, depends to some extent on the
purpose of the study. When internal protein motions are probed
by 15N relaxation, the vectorsu(NiHi

N) must obviously be
included in the network. In many cases, it is advisable to
incorporate additional types of vectors that are associated with
backbone or side-chain atoms. For example, the set of “backbone
vectors” may include the vector typesu(C′iOi), u(Ci

RHi
R), and

u(C′iCi
R), and the “side-chain vectors” may compriseu(Ci

RCi
â)

andu(Ci
RTi), where Ti represents a heavy atom at the end of a

side chain. As detailed below, several combinations, including
up to three vector types, were used in this work. If one changes
the number of vector types used in the model, a recalibration
of the parameterκ0 is necessary.

Since proteins are densely packed molecules, the motions of
most of the vectorsui are restricted, and their amplitudes are
necessarily limited. In this context, we have shown that the
following form of the pairwise potentials gives a satisfactory
description:

where the coefficients of the matrixH relate the equilibrium
polar angles (θi0, φi0) and (θj0, φj0) of the vectors〈ui〉 and〈uj〉,
while the componentsuxi and uyi of ui are given in a local
molecule-fixed Cartesian frameRi ) (ai, bi, ci), such thatci )
〈ui〉. Similar relationships hold foruj. Explicit expressions for
the coefficients of the matrixH are given in earlier work.6

Ming and Brüschweiler14 recently introduced pairwise po-
tentials that tend to restore the angles between pairs of NH
vectors to their equilibrium values. Neighboring atoms contribute
as in their earlier contact model.13 Despite different functional
forms of the potentials, the model of Ming and Bru¨schweiler
and ours bear some similarities, with structure-based potentials
where atomic packing plays a key role. However, the approach
presented by Ming and Bru¨schweiler does not provide a means
of calculating effective correlation times, since it does not
incorporate any equations of motion. However, the time
evolution can be retrieved through molecular dynamics using
the Reorientational Eigenmode Dynamics (RED) of Prompers
and Brüschweiler.15

In the NCR model, the vectors are diffusing or “wobbling”
in the potentialU and are driven by stochastic Langevin forces.
Averages that are required for the calculation of NMR relaxation
rates, such as correlation functions and generalized order
parameters, can be determined by solving the rotational Lan-
gevin equations.16 Thus the autocorrelation functionCii(t) that
describes the fluctuations of a vectorui is

Here,P2(x) ) 1/2(3x2 - 1) is again the second-rank Legendre
polynomial. For molecules undergoing isotropic global rotational
diffusion, where global and internal motions can be considered
to be statistically independent,4,5 each local correlation function
Cii(t) can be factorized

where C0(t) and Cii
I(t) are the correlation functions for the

global and internal motions. For a vectorui, the latter can be
written:17

where the Euler anglesΩi ) (θi, φi) describe the fluctuating
orientation of the vectorui with respect to a reference frame
rigidly attached to the molecule. Making the assumption of small
amplitude motions for the vectorsui, the order parameterSii

2
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Biochemistry1993, 32, 9832.
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Uij ) -FiFjκ0kTP2(cos(θij - θ0ij)) (1)

U ) Σi<jUij (2)

Uij ) -(12)κ0kTFiFj[uix, uiy, ujx, ujy] H[uix, uiy, ujx, ujy]
t

(3)

Cii(t) ) 1/5〈P2(ui(t) ‚ ui(0))〉 (4)

Cii(t) ) C0(t) Cii
I(t) (5)

Cii
I (t) ) ∑

m ) -2

2

〈Dm0
(2)*(Ωi(0)) Dm0

(2)(Ωi(t))〉 (6)
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can be expressed in the local frameRi as6,18

With the above approximations, it is possible to derive a set of
ordinary differential equations for the averages involved in eq
7. Thus the network of coupled rotators allows one to predict
both the local order parametersSii

2 and the internal autocorre-
lation functionsCii

I(t), both of which can be compared with
those determined from NMR relaxation experiments.

Finding a simple approximation toCii
I(t) represents an

important issue in NMR relaxation studies. A common approach
is to use a monoexponentially decaying function with a time
constantτie, which is known as the effective correlation time
of the local motion. The quantityτie can be defined as the
integral of theCii

I(t) that decays to zero:4

This is consistent with the usual definition. Therefore, the
correlation functionCii

I(t) is simply

An alternative definition of the effective correlation time16 is
based on the initial slope of the correlation functionCii

I(t):

Since this definition emphasizes the behavior of the correlation
function at the origin, it may be better suited to describe faster
internal dynamics. Of course, in the case of an exact monoex-
ponential correlation function as given by eq 9, both definitions
are identical. The ability of the NCR model to predict effective
correlation times found by experiment will be discussed below,
along with a comparison between the two alternative definitions
of the correlation times.

The Networks

Construction of NCRs for apo- and holo-Calbindin. The
present work is primarily concerned with the prediction of order
parameters and effective correlation times that can be obtained
from experimental15N relaxation rates, which are determined
by the fluctuations ofu(NiHi

N) vectors. This requires the
inclusion of allu(NiHi

N) vectors in the NCR, i.e., one for each
residue, except for prolines, whereu(NiHi

N) must be replaced
by u(NiCi

δ). Other types of vectors, such asu(C′iOi) and
u(Ci

RHi
R) (two such vectors for glycines), can be further

incorporated into the network. In order to study the changes in
internal dynamics of calbindin induced by Ca2+ binding, we
also introducedu(CaOi) vectors parallel to the Ca-O bonds
that are formed when the metal ions bind to the protein. Indeed,
calbindin possesses two Ca2+ binding sites with a characteristic
EF-hand motif. Inholo-calbindin, both Ca2+ ions are bound to
oxygen atoms belonging to various backbone carbonyl CdO
groups and to carboxylic groups of side chains.11 Thus, six

u(CaOi) vectors were introduced for each binding site, as shown
in Figure 1b. For theu(CaOi) vectors, the local distances were
determined for spheres centered on the oxygen atoms Oi.

Calbindin Structures Used for the Calculations. The
structures ofapo-calbindin19 (entry 1CLB in the PDB, 33
structures) andholo-calbindin20,21 (entry 1B1G in the PDB, 10
structures), which have been determined by NMR, were used
for the NCR calculations. The X-ray structure ofholo-calbindin11

(entry 4ICB in the PDB) could also serve as a basis for NCR
calculations: indeed, the hydrogen atoms were positioned using
the Hbuild routine of the CHARMM program,22 with the
equilibrium geometric parameters of CHARMM22, thus allow-
ing to define theu(NiHi

N) vectors required for the NCR
calculations.

Unfortunately, the X-ray structure ofapo-calbindin has not
been determined to the best of our knowledge. It was neverthe-
less interesting to predict the dynamics of calbindin from a
“fictitious” apoX-ray structure, which was obtained simply by
removing the Ca2+ ions from theholoX-ray structure. Of course,
this implies that some structural changes that might occur upon

(18) Daragan, V. A.; Mayo, K. H.J. Phys. Chem. B1999, 103, 6829.

(19) Skelton, N. J.; Kordel, J.; Chazin, W. J.J. Mol. Biol. 1995, 249, 441.
(20) Kordel, J.; Skelton, N. J.; Akke, M.; Chazin, W. J.J. Mol. Biol. 1993,

231, 711734.
(21) Kordel, J.; Pearlman, D. A.; Chazin, W. J.J. Biomol. NMR1997, 10, 231.
(22) Brooks, B.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan,

S.; Karplus, M.J. Comp. Chem.1983, 4, 187.

Sii
2 ) lim

tf∞
Cii

I (t) ≈ 1 - 3[〈uix
2 〉eq+ 〈uiy

2 〉eq] (7)

τie ) ∫0

∞ Cii
I(t) - Sii

2

1 - Sii
2

dt (8)

C I
ii(t) ) Sii

2 + (1 - Sii
2) e-t/τie (9)

τ̃ie )
Sii

2 - CI
ii(0)

d
dt

CI
ii(t)|t)0

(10)

Figure 1. (a) The family of 33 structures ofapo-calbindin (PDB entry
1CLB) obtained by NMR (gray) is superimposed with the X-ray structure
(red) of holo-calbindin (PDB entry 4ICB). Regions where the structure is
not well-defined correspond to the Ca2+ binding sites (indicated by blue
arrows) and to the linker between the two EF-hands (in the lower-right
region of the figure). (b) The X-ray structure ofholo-calbindin (PDB entry
4ICB) shows the two Ca2+ ions (blue) connected to their binding oxygen
atoms (red balls) by vectors included in the network of coupled rotators
(blue arrows).
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Ca2+ release would be overlooked. However, the comparison
in Figure 1 of the 33 NMR-derived structures ofapo-calbindin
with the unique X-ray structure ofholo-calbindin shows that
they are all quite similar, and their dispersion may reflect the
heterogeneity of the native state.23 Therefore, performing NCR
calculations for theapocase using the fictitious X-ray structure
appears justified. Thus, the NCR ofapo-calbindin was obtained
from its holo counterpart simply by removing allu(CaOi)
vectors.

Effect of Model Parameters on Predictions: Critical
Parameters.The parameterκ0 of eq 1 defines the weight of
the coupling potential relative to the diffusion term in the
Langevin equations.6,7 On the one hand, ifκ0 were too small,
diffusion would be dominant and the bond vectors would diffuse
almost freely. However, in such a case, the assumption of small
amplitude motions is violated and the NCR model should not
be used. This explains the curves in Figure 2a obtained for small
values ofκ0 ) 0.01 and 0.1 which presentSii

2(pred)profiles that
are hardly correlated with the experimentalSii

2(exp). On the other
hand, for a large value ofκ0 ) 10 in Figure 2a, the coupling
potential dominates the diffusion process by far: the network
is highly rigid, and the order parametersSii

2(pred)are consistently
close to 1. They nevertheless present a profile that is still similar
to the experimental one. Interestingly, forκ0 values above some
threshold (κ0 ) 1 in Figure 2a), the linear and rank-order
correlation coefficients between predicted and experimental
order parametersSii

2(pred) and Sii
2(exp) do not vary signifi-

cantly, althoughSii
2(pred) values steadily increase withκ0. This

parameter thus acts as a scaling factor for the predicted order
parameters.

Taking the local density into account improves the agreement
between Sii2(pred)and Sii

2(exp), as shown in Figure 2b. This should
be related to the well-known influence of “packing” in proteins,
which has been recognized as a critical factor of atomic
mobility.12,13However, the profiles in Figure 2b also show that
even if variations in local densities are ignored when defining
the pairwise potentials, the predicted order parameters bear some
similarity with experimental values. This points to an additional
fundamental geometric factor that is at the heart of the NCR
model, namely the importance of the relative equilibrium
orientations of the vectors〈ui〉 in the network, which are
embodied in the pairwise potentials through the coefficients in
eq 3. The definition of the network influences the quality of
the predictions of bothSii

2 andτie. In this respect, two factors
are of particular importance: the type of vectors included in
the NCR and the spatial extent of the coupling within the
network. As explained above,u(NiHi

N) vectors were included
in the NCR since they provide a direct link with15N relaxation,
which depends on the fluctuations ofu(NiHi

N) vectors. Fur-
thermore, various combinations of up to three of the five types
of vectorsu(NiHi

N), u(C′iOi), u(Ci
RHi

R), u(C′iCi
R), andu(Ci

RTi)
were tested to build the networks. For calculations onholo-
calbindin, the networks were supplemented byu(CaOi) vectors.
Interestingly, the Sii2(pred) order parameters were improved by
adding a second vector type, but adding a third type of vector
did not seem to improve the predictions further.

(23) Best, R. B.; Lindorff-Larsen, K.; DePristo, M. A.; Vendruscolo, M.Proc.
Natl. Acad. Sci. U.S.A.2006, 103, 10901.

Figure 2. Comparison of order parametersSii
2(pred)predicted by our NCR approach (color code) withSii

2(exp)(black dashed lines) derived from15N relaxation
studies ofapo-calbindin. (a) Effect of the scaling factorκ0: for small values ofκ0, there is no correlation between experimental and theoretical profiles,
whereas for large values ofκ0 all predicted order parameters tend to cluster to 1. (b) Comparison of predictions for a constant local densityFi with predictions
obtained using the densities calculated from the NMR structure of the protein. (c) Effect of the cutoff distanceRc

max with Rc
min ) 0 Å. (d) Variation ofRc

min

with Rc
max ) 7.5 Å.
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In order to obtain an NCR that best reproduces the dynamics
of the protein, and to speed up computations, it is useful to
assume that couplings between vectors can be neglected beyond
a cutoff distanceRc

max. This represents a crude distance
dependence in our definition of the potential, expressing the
intuitive view that the farther the atoms, the weaker the coupling.
In order to implement this assumption, thereference atomsof
the vectorsui were defined by convention as the backbone atoms
Ni and Ci

R for u(NiHi
N), u(Ci

RHi
R), andu(Ci

RTi), as the carbonyl
atoms C′i for u(C′iOi) and as the oxygen Oi atoms foru(CaOi).
For a distanceRij between reference atoms belonging to two
vectors ui and uj such thatRij > Rc

max, the coupling was
neglected. The densitiesFi were calculated for spheres centered
on these reference atoms by counting the total number of
neighbors within a sphere of radiusRc

max. Calculations were
performed for cutoff distances ranging fromRc

max ) 1.5 Å,
typical of a chemical bond length, toRc

max ) 10.5 Å. The
correlations between predicted and experimentalSii

2 and τie

values steadily improve withRc
max increasing up to about 7 Å

and then slightly decrease. This suggests that, for excessively
large cutoff distances, too many vectors are included in the
definition of the network, resulting in a potential that tends to
be almost isotropic and leading to an excessive uniformity of
the vector dynamics across the entire protein. Interestingly, the
low Sii

2 values that are characteristic of flexible regions of
calbindin could be predicted with thresholds as small asRc

max

) 4.5 Å. The best correlations between predicted and experi-
mentalSii

2 andτie were obtained in the range 5.5 Å< Rc
max <

7.5 Å, in agreement with previous studies.12,24A cutoff distance
Rc

max ) 7.5 Å allowed the characterization of many important
protein properties.

Finally, the influence of atoms located in close vicinity of
the reference atoms was considered. To do so, the network
vectors were selected and the densities were calculated using a
window with both lower and upper cutoffs, so as to include
only neighbors with a distance to the reference atomRc

min < R
< Rc

max. For simplicity, the upper limit was set toRc
max ) 7.5

Å, while Rc
min was varied from 0< Rc

min < 7 Å in steps of 1
Å. Interestingly, theSii

2 profiles are not greatly affected for
values of Rc

min below 4 Å. This is in agreement with an
observation by Halle12 and supports the idea that the effect of
the close neighborhood of backbone atoms is rather uniform,
so that it does not contribute much to variations of the order
parameter along the protein. In contrast, more distant atoms
reflect the heterogeneity of the protein structure, which seems
to explain the specificity of the protein dynamics.

With a single set of parameters (Rc
max ) 7.5 Å andκ0 ) 2.5)

and an NCR comprising allu(NiHi
N) andu(C′iOi) vectors, as

well as u(CaOi) for the holo case, the agreement between

predicted and experimentalSii
2 values in calbindin, measured

by either linear or Spearman correlation coefficients,25 is quite
remarkable (see Table 1). Unless otherwise stated, the same set
of parameters and vector types will be used throughout this
work. However, it is important to note that the parameters (Rc

max,
κ0) were determined specifically for calbindin. We do not claim
to have determined a universal set of parameters that would be
valid for arbitrary proteins, although we believe to have
identified some important trends and features of the NCR model,
based on our calbindin study.

Predictions for apo-Calbindin

Order Parameters.Order parameters predicted by the NCR
approach based on the NMR structure of calbindin in theapo
form19 were compared with NMR-derived order parameters.9

Results are shown in Figure 4a. From the set of M) 33
structures deposited in the protein data bank (PDB), an average
order parameter and its associated standard deviation were
predicted for each residuei. Thus, the dispersion of the predicted
order parameters originates only from the variations in the PDB
structures. The agreement between predicted and experimental
order parameters is attested by a strong correlation between the
two sets of values. The average value〈F〉 ) (1/M)Σj)1,M F(j),
whereF(j) is the correlation coefficient between the experimental
and predicted quantities for thejth element in the ensemble of
j ) 1, 2, ..., M structures, and the corresponding standard
deviation

of the correlation coefficients were then computed over theM
) 33 structures. A correlation plot of predicted versus experi-
mental order parameters is shown in Figure 3. Both the linear
correlation coefficient〈Fl〉 ) 0.74 ( 0.08 and the rank-order

(24) Bahar, I.; Jernigan, R. L.J. Mol. Biol. 1997, 266, 195.
(25) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.Numerical

recipes; Cambridge University Press, 1989.

Table 1. Linear and Spearman Rank-Order Correlation
Coefficients Fl and Fs Resulting from a Comparison of
NCR-Predicted Order Parameters Sii

2(pred) with Sii
2(exp) Derived

from 15N Relaxation Studies of apo- and holo-Calbindina

NCR predictions based
on NMR or X-ray structures Fl Fs

apo(NMR) 0.74( 0.08 0.78( 0.03
apo(“fictitious” X-ray) 0.59 0.78
holo (NMR) 0.71( 0.1 0.49( 0.03
holo (X-ray) 0.81 0.52

a In the former case, the NCR network includesu(C′iOi) andu(NiHi
N)

vectors only; in the latter, it also comprisesu(CaOi) vectors.

Figure 3. Correlation between predicted and experimental order parameters
in apo-calbindin (red) andholo-calbindin (black). Horizontal error bars
correspond to the standard deviation of the order parameters calculated for
M ) 33 (apo) andM ) 10 (holo) NMR structures.

σF ) x1/M ∑
j)1,M

(F(j) - 〈F〉)2
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Spearman coefficient〈Fs〉 ) 0.78( 0.03 confirm the agreement
between experimental and predicted values.

The two EF-hand loops involved in Ca2+ binding, as well as
the linker between helices II and III are regions that exhibit
more variability within the PDB set. By restricting the calcula-
tion of the correlation coefficients to these regions, we obtained
〈Fl〉 ) 0.65 ( 0.1 and〈Fs〉 ) 0.68 ( 0.06. These values are
somewhat lower than in the remainder of the protein, and have
larger standard deviations. This is a consequence of local
variations among the PDB structures, and illustrates the
dependence of NCR predictions on the structure.

Alternatively, order parametersSii
2 were predicted from the

fictitious X-ray structure ofapo-calbindin, as explained above.
The network was built with the same vectors as in calculations
based on the family of 33 NMR structures. Computations
yieldedFl ) 0.60 andFs ) 0.78, which fall within the standard
deviations of the correlation coefficients obtained for the NMR
structures, suggesting that the fictitious X-ray structure (i.e., with
the Ca2+ ions removed) is just as suitable as the NMR structures
to make dynamic predictions forapo-calbindin (see Table 1).

Order parameters were also predicted forapo-calbindin by

Ming and Brüschweiler using their reorientational contact-
weighted elastic network model (rCENM).14 Comparable cor-
relation coefficients were obtained. This may be ascribed to the
similarities of the two models, both of which depend on the
number of neighbors (“contacts”) and are based on pairwise
potentials.

Effective Correlation Times. The determination of the time-
scales of internal motions is an important aspect of protein
dynamics. In this respect, the calculation of site-specific effective
correlation timesτie is of much interest, as they can be readily
compared with values obtained from NMR relaxation measure-
ments. In the NCR model, each vectorui in the network is
assumed to undergo isotropic rotational diffusion in the potential
defined by eq 3. Thus, the value of the diffusion coefficientDi

of each vectorui appearing in the rotational Langevin equations6

can be thought of as an adjustable parameter of the model.
However, for sake of simplicity, one may arbitrarily assign the
same diffusion coefficientD to all rotators. Thus,D simply acts
as a scaling factor for all time-scales of internal dynamics
predicted by the model. This is obviously a very crude
approximation, but it has the advantage of keeping the number
of adjustable parameters as small as possible.

The τie profiles were predicted by NCR using the usual
definition eq 8 and compared with experimental effective
correlation times obtained from a model-free analysis.4,5 The
results are shown in Figure 4b forapo-calbindin.19 The
correlation coefficients between predictions and experiment are
Fl ) 0.57 ( 0.10 andFs ) 0.65 ( 0.05. The predictions of
internal effective correlation timesτie and τ̃ie computed by the
two alternative definitions of eqs 8 and 10 were then compared.
Interestingly, both give similar correlations with experimental
values, but as expected,τie is always larger thanτ̃ie. This is not
surprising, since the calculation ofτie emphasizes contributions
to correlation functions at longer times, reflecting slower
motions. Besides, it is remarkable that there is no simple scaling
between either of the calculated effective correlation timesτie

and τ̃ie, on the one hand, and the experimentalτie
(exp), on the

other. Adjusting the shorterτie to experimental results leads to
underestimatingτie in loop regions, whereτie

(exp) is longer.
Alternatively, fittingτie to the latter yields an unreasonable offset
of the ensemble of smallerτie. These observations suggested
that τ̃ie andτie may be good approximations for fast and slow

Figure 4. (a) Black open squares: experimentally determined order
parametersSii

2(exp) based on15N relaxation rates. Red diamonds: order
parametersSii

2(pred)predicted by the NCR approach, averaged over calcula-
tions for all 33 NMR structures ofapo-calbindin. Error bars indicate the
standard deviations; the linear and Spearman correlation coefficients are
〈Fl〉 ) 0.74( 0.08 and〈Fs〉 ) 0.78( 0.03. Blue circles:Sii

2(pred)predicted
by the NCR method from the X-ray structure. (b) Effective correlation times
τie (brown triangles) andτ̃ie (magenta triangles) calculated with the
alternative approaches of eqs 8 and 10 from the set of 33 NMR structures.
Values selected according to the heuristic strategy described in the text are
connected by a solid red line. Experimentally determinedτie

(exp) values
obtained from a model-free analysis9 are represented by open black squares.
The correlation coefficients wereFl ) 0.57( 0.10 andFs ) 0.65( 0.05.
Calculations were made usingu(NiHi) andu(Ci′Oi) vectors, withκ0 ) 3
andRc

max ) 7.5 Å. When the relaxation rates required an extended model-
free approach, the residues are marked with blue stars (see text for details).

Figure 5. The effect of the insertion ofu(CaOi) vectors into the NCR on
predicted order parametersSii

2(pred)for holo-calbindin. Black open squares:
NCR defined byu(NiHi

N) andu(C′iOi) vectors only. Red filled diamonds:
NCR with incorporation ofu(CaOi) vectors, which leads to a reduction of
the motions near the binding sites.
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internal motions, respectively. Thus, the predictedτie values were
separated into two categories, corresponding toshortand long
effective correlation times, respectively. In practice, values of
τie that were closer than a standard deviation to the average
〈τie〉 ) (1/N) Σi)1,N τie over theN residues were categorized as
short, and the predicted effective correlation times were set to
τ̃ie. For the remaining residues, the predicted effective correlation
times were τie. With this heuristic definition of effective
correlation times, one finds a simple proportionality between
experimental and predicted values (see Figure 4b), covering the
full range of allτie

(exp) values.
Interestingly, the experimental effective correlation times

obtained by Akke et al.9 were extracted from relaxation data
using a simple model-free approach for most residues. In this
case, the internal correlation function of theu(NiHi

N) vectors

has the functional form given by eq 9. However, for some
residues (marked by stars in Figure 4b), an extended model-
free (EMF) approach26 was required. In this case, internal
dynamics occur on both fast and slow timescalesτf and τs,
associated with distinct order parametersSf

2 andSs
2. If τf , τs,

the internal correlation function is monoexponential

and it is possible to extractτs, Ss, andSf. In the case ofapo-
calbindin, residues which required an analysis of relaxation data
by this EMF approach are located in the linker and in the loop
II EF-hand, i.e., in regions with slower internal mobility.9

Interestingly, the NCR model was able to approximately
reproduce the profiles of the effective correlation times extracted
from experimental data, even for residues where the EMF level
of analysis was required (see Figure 4b). This suggests that
effective correlation times based on a single NCR model may
cover both situations, without additional adjustable parameters.

Predictions for holo -Calbindin

Order Parameters. The same strategy was implemented in
the case ofholo-calbindin to investigate the effects of Ca2+

binding on the predictions of the internal dynamics of the
protein. Binding to Ca2+ ions strongly alters the dynamics of
the loop II region of calbindin.9 Indeed, order parameters
Sii

2(exp) obtained from NMR relaxation measurements show a
significant reduction of backbone motions in theEF-hand loop
regions upon Ca2+ binding. In an attempt to predict these effects,
the NCR composed ofu(NiHi

N) and u(C′iOi) vectors was
supplemented withu(CaOi) vectors corresponding to the Ca-O
bonds formed in the complex. As a test of the efficiency of this
strategy, order parametersSii

2 were predicted for NCRs with
and withoutu(CaOi) vectors, based on the NMR structure of
holo-calbindin. The results are depicted in Figure 5: as expected,
the insertion of theu(CaOi) vectors into the network affects
the predicted dynamics of the protein in the neighborhood of
the Ca2+ ions. Binding to Ca2+ ions clearly induces a higher
rigidity, as attested by an increase of the order parametersSii

2(pred)

in both calcium-binding loops. Thus, addingu(CaOi) vectors
to the network significantly improves the agreement between
predicted and experimentally derived order parametersSii

2(exp)

in holo-calbindin. The linear correlation coefficient between
predicted and experimental order parameters increases fromFl

) 0.61 ( 0.14 toFl ) 0.71 ( 0.13 upon supplementing the
NCR with u(CaOi) vectors (see Table 2).

The effects of including theu(CaOi) vectors are summarized
in Figure 6a, where predicted and experimental order parameters
Sii

2 are compared for all residues (see also the correlation plot
in Figure 3). Comparison between experimental data and

(26) Clore, G. M.; Szabo, A.; Bax, A.; Kay, L. E.; Driscoll, P. C.; Gronenborn,
A. M. J. Am. Chem. Soc.1990, 112, 4989.

Figure 6. (a) Comparison of order parametersSii
2(pred) predicted by our

NCR approach (red and blue symbols) forholo-calbindin withSii
2(exp)(open

squares) derived from15N relaxation studies. The correlation coefficients
wereFl ) 0.71( 0.13 andFs ) 0.48( 0.03. (b) Experimental and predicted
effective correlation timesτie and τ̃ie calculated with the alternative
approaches of eq 8 (open circles) and eq 10 (open squares) with correlation
coefficientsFl ≈ 0.74,Fs ≈ 0.57. The network was composed ofu(NiHi

N),
u(C′iOi) andu(CaOi) vectors, withκ0 ) 3 andRc

max ) 7.5 Å. The symbols
have the same meaning as those in Figure 4.

Table 2. Effect on NCR Predictions of the Incorporation of
u(CaOi) Vectors for holo-Calbindina

without u(CaOi) with u(CaOi)

NCR predictions Fl Fs Fl Fs

Sii
2(pred)vs Sii

2(exp) 0.61( 0.14 0.51( 0.03 0.71( 0.13 0.48( 0.03
τie

(pred)vs τii
2(exp) 0.63( 0.13 0.48( 0.08 0.68( 0.12 0.55( 0.06

a Linear and Spearman rank-order correlation coefficientsFl and Fs
resulting from a comparison between predicted and experimental order
parametersSii

2(pred) and Sii
2(exp) and between predicted and experimental

effective correlation timesτie
(pred)andτie

(exp). Calculations are based on the
family of 10 NMR structures.

Table 3. Comparison between NCR-Predicted Effective
Correlation Times τie and τ̃ie [see Eqs 8 and 10] in apo- and
holo-Calbindin, Based on Their NMR Structures

τie (eq 8) τ̃ie (eq 10)

Fl Fs Fl Fs

apo-cabindin 0.57( 0.10 0.65( 0.05 0.61( 0.09 0.61( 0.04
holo-calbindin 0.68( 0.12 0.55( 0.06 0.69( 0.12 0.45( 0.05

CI(t) ) S2 + (Sf
2 - S2) e-t/τs (12)
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predictions based on the NMR structure ofholo-calbindin yields
Fl ) 0.71( 0.13 andFs ) 0.48( 0.03 for the linear and rank-
order Spearman coefficients. These coefficients take the values
Fl ) 0.81 andFs ) 0.52 when the predictions are based on the
X-ray structure of calbindin. It is worth noting that the linear
correlation coefficient does not vary much (Fl ≈ 0.7) between
the apo- and holo-forms, whereas the rank-order correlation
coefficient Fs is markedly lower inholo-calbindin. The large
difference ofFs can be understood by noting that theSii

2(pred) in
the loop II region is not completely uniform in theholo case
but still shows a (significantly attenuated) dip, which does not
appear in the experimental profiles (see Figures 4a and 6a). The
rank-order correlation coefficient therefore decreases. However,
the linear correlation remains strong, owing to the fact that
predicted values remain close to the experimental ones. This

observation suggests that there is some scope for further
improvement of the model. For example, the predictions might
be improved by taking into account the effect of water molecules
in exposed areas.

Effective Local Correlation Times. The effective correlation
times were predicted forholo-calbindin with the two alternative
definitions of eqs 8 and 10, like those forapo-calbindin. The
correlation coefficients between predicted and experimental9,10

τie are Fl ) 0.68 ( 0.12 andFs ) 0.55 ( 0.06. In addition,
comparable correlations between predictedτ̃ie andτie

(exp) were
obtained: Fl ) 0.69 ( 0.12 andFs ) 0.45 ( 0.05 (see Table
3). This confirms that effective correlation times calculated by
either definition have very similar profiles. The heuristic
selection strategy introduced above was used to obtain a
compromise set of predictedτie

(heur) values. The results are

Figure 7. (A) Solid line: B(Ni)-factors of the amide N atoms obtained from a Normal Mode Analysis (NMA) based on the Elastic Network Model (ENM)
of a “fictitious” structure ofapo-calbindin obtained by removing the Ca2+ ions from the X-ray structure ofholo-calbindin. Order parameters [1- Sii

2(pred)(NiHN
i)]

predicted by the NCR model, using two vector typesu(C′iOi) andu(NiHi
N) and the same structures ofapo- andholo-calbindin (dashed and dotted lines,

respectively). (B) Dashed line: experimentalB(CR
i)-factors of the CR atoms inholo-calbindin. Dotted lines:B(CR)-factors of the CR atoms obtained from

an NMA analysis based on the X-ray structure. Solid line: order parameters [1- Sii
2(pred)(CR

iHR
i)] predicted by NCR forholo-calbindin using three vector

typesu(C′iOi), u(NiHi
N), andu(Ci

RHi
R) with κ0 ) 2 andRc

max ) 7.5 Å.
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collected in Figure 6b and clearly show the improvement of
the predicted effective correlation timesτie

(heur) over either of
the methods of eq 8 or 10. Interestingly, as noted inapo-
calbindin, the NCR model is able to reproduce correlation times
even for residues that require an extended model-free analysis
of the experimental relaxation measurements.

Comparison with B-Factors

One way of assessing internal protein mobility consists in
determining atomic mean square deviations (AMSDs), denoted
〈∆R2〉 where∆R ) R - 〈R〉 is the displacement vector of a
given atom, which can be obtained experimentally from X-ray
diffraction. TheB-factor is proportional to〈∆R2〉:

Our NCR approach provides an alternative description of
internal protein dynamics that is adapted to NMR studies, where
relaxation rates are related to molecular motions through
fluctuations of dipolar and chemical shift anisotropy interactions,
rather than to atomic displacements from equilibrium positions.
TheB-factors of CR and amide N atoms were obtained from a
normal-mode analysis (NMA)2 using the Elastic Network Model
(ENM) based on a simple Hookean potential.3,27 Calculations
were made using the ElNe´mo Web interface.28 The B-factors
obtained by NMA computations for amide N atoms in the X-ray
structure ofholo-calbindin are depicted in Figure 7a, together
with values (1- Sii

2(exp)) determined by15N relaxation. In order
to compare NCR-predicted [1- Sii

2(pred)(Ci
RHi

R)] with B-factors
of Ci

R atoms, which are commonly reported in protein studies,
we incorporatedu(Ci

RHi
R) vectors into our network, in addition

to u(NiHi
N) andu(C′iOi) vectors. The values of the parameters

in the potential of eq 1 were modified accordingly (κ0 ) 2,
Rc

max ) 7.5 Å). Correlation coefficients betweenB-factors for
Ci

R atoms and order parameters [1- Sii
2(pred)(Ci

RHi
R)] are given

in Table 4 for bothapo- andholo-calbindin. These calculations
show strong correlations between the mobility of backbone
atoms andu(C′iOi), u(Ci

RHi
R), andu(NiHi

N) vectors (Fl > 0.80,

see Table 4). This can be related to the fact that although the
Elastic Network Model (ENM) and NCR models are very
different, they both rely on harmonic potentials, with an energy
minimum for the equilibrium structure of the protein. Obviously,
there is no formal relationship betweenB-factors and order
parametersSii

2 predicted by our NCR approach, since vector
orientations are not directly related to atomic displacements. It
is however possible to derive order parametersSii

2 from the
ENM approach, although at the expense of more or less
unwarranted geometrical assumptions.8,29

In Figure 7b, the NCR-predicted order parameters [1-
Sii

2(pred)(CR
iHR

i)] are compared with those of NMA-predicted
and experimental11 B(Ci

R)-factors inholo-calbindin. This graph
clearly illustrates that, despite local discrepancies, both NMA-
and NCR-based predictions yield analogous dynamical pictures
of the protein, as indicated by very similar profiles. The
agreement between predicted and experimentalB-factors is not
satisfactory in the linker region, where the experimental
B-factors may reflect static disorder (crystal defects), rather than
dynamical effects. It is nevertheless clear from Figure 7b that
the correlations of experimentalB-factors in both Ca2+-binding
loop regions (residues 16-24 and 54-62) are more satisfactory
with the NCR-predicted order parameters [1- Sii

2 (pred)(Ci
RHi

R)]
than with the NMA-predictedB-factors. This can easily be
understood by noting that the two binding Ca2+ ions are not
explicitly considered in the Elastic Network Model.28 In contrast,
Ca-O bonds formed upon Ca2+ binding are explicitly intro-
duced as vectors in our NCR approach, which therefore takes
Ca2+ binding into account in a natural and straightforward
manner.

Conclusions

In this paper, we have presented a detailed analysis of the
internal dynamics of both theapo- and holo-forms of the
calcium-binding protein calbindin, using the networks of coupled
rotators (NCRs) introduced recently. It was demonstrated that
incorporation into the NCR model ofu(CaOi) vectors represent-
ing the weak interactions between Ca2+ ions and oxygen atoms
in the binding pockets allowed us to predict variations of order
parameters and effective internal correlation times along the
backbone. The application of the NCR model to theapo/holo-
calbindin system illustrates the versatility of our approach and
suggests that it is applicable to a wide range of systems.
Moreover, a new heuristic strategy for the prediction of internal
correlation times was introduced, improving the agreement with
experiment. Further developments of the methodology, which
include the prediction of side-chain dynamics, are under way.
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Table 4. Linear Correlation Coefficients between B(Ci
R)- and

B(Ni)-Factors and NCR-Predicted Order Parameters Sii
2(pred) for

Various Internuclear Vectors in holo- and apo-Calbindin, Based on
Their NMR Structures

holo-calbindin apo-calbindin

S2(C RHR) S2(C′O) S2(NH) S2(CRHR) S2(C′O) S2(NH)

B(Ci
R)-factors -0.85 -0.81 -0.80 -0.88 -0.87 -0.84

B(Ni)-factors -0.83 -0.83

B ) (8π2/3)〈∆R2〉 (11)
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